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CHAPTER 1

Getting Started with metapredict

1.1 What is metapredict?

metapredict is a software tool to predict intrinsically disordered regions in protein sequences. It is provided as a
downloadable Python tool that includes a Python application programming interface (API) and a set of command-line
tools for working with FASTA files.

Our goal in building metapredict was to develop a robust, accurate, and high-performance predictor of intrinsic
disorder that is also easy to install and use. As such, metapredict is implemented in Python and can be installed
directly via pip (see below).

Important update - as of February 15, 2022 we have updated metapredict to V2. This comes with important
changes that improve the accuracy of metapredict. Please see the section on the update Major update to metapre-
dict predictions to increase overall accuracy below. In addition, this update changes the functionality of the pre-
dict_disorder_domains() function, so please read the documentation on that function if you were using it previously.

We recently released a preprint documenting all these changes and more!

As well as providing a set of high-performance software tools, metapredict is provided as a stand-alone web server
which can predict disorder profiles, scores, and contiguous IDRs for single sequences.

To access the web server go to metapredict.net.

1.2 How does metapredict work?

metapredict is a bit different than your typical protein disorder predictor. Instead of predicting the percent chance
that a residue within a sequence might be disordered, metapredict tries to predict the consensus disorder score for
the residue. Consensus disorder reports on the fraction of independent disorder predictors that would predict a given
residue as disordered.

1
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1.2.1 This already seems complicated. . .

metapredict is a deep-learning-based predictor trained on consensus disorder data from 8 different predictors, as
pre-computed and provided by MobiDB. Functionally, this means each residue is assigned a score between 0 and 1
which reflects the confidence we have that the residue is disordered (or not). If the score was 0.5, this means half
of the predictors predict that residue to be disordered. In this way, metapredict can help you quickly determine the
likelihood that residues are disordered by giving you an approximation of what other predictors would predict (things
got pretty ‘meta’ there, hence the name metapredict).

1.2.2 Major update to metapredict predictions to increase overall accuracy

We are always working to make metapredict better, and we have recently managed just that. More details will be
below, but the short story is that we have made significant improvements in the accuracy of disorder predictions using
metapredict. By analyzing our new network using the Disprot-PDB dataset predictions, we found that the MCC (which
is a measurement accounting for false positives, false negatives, true positives, and true negatives) for metapredict
increased from 0.588 for the old (original) network to 0.7 for our new network. To put this in perspective, our original
network was ranked 12th most accurate when analyzing the Disprot-PDB dataset, and by our own estimates V2 is now
ranked as the 2nd most accurate available predictor.

For more information on the changes made please see our recent preprint:

Emenecker, R. J., Griffith, D., & Holehouse, A. S. (2022). Metapredict V2: An update to metapredict, a fast, accurate,
and easy-to-use predictor of consensus disorder and structure. In bioRxiv (p. 2022.06.06.494887). https://doi.org/10.
1101/2022.06.06.494887

Any questions, please don’t hesitate to reach out!

1.3 But wait! I need the old metapredict predictions!!!

No worries! We left users access to the old network. The default network is now our new, more accurate network.
However, by calling -l or --legacy from the command line or by specifying legacy=True from Python, you
will be able to use the original metapredict network. We wanted to keep making metapredict better, but we also wanted
to minimize disruptions to anyone currently relying on the original metapredict predictions for whatever reason.

1.4 So. . . how exactly was this more accurate metapredict network
made?

We didn’t think it was possible, but metapredict has somehow become even more meta. Get ready, because things are
about to get a little weird. When we implemented the AlphaFold2 pLDDT prediction feature (see section below), we
noticed that there were occasional discrepancies between metapredict and the predicted pLDDT (ppLDDT) scores.
When the ppLDDT scores get high enough, it is unlikely that a given region is actually disordered. So, we developed a
version of metapredict that we originally called ‘metapredict-hybrid’ that essentially combined aspects of the ppLDDT
scores and the original metapredict scores. We found that this ‘hybrid predictor’ was much better than the original
metapredict disorder predictor at predicting disordered regions. But we didn’t stop there.

We think one of metapredicts best features is it is really really fast. This ‘hybrid-predictor’ was a little on the slow
side, coming in at about 1/3 the speed of the original metapredict predictor. This is still VERY fast, but we thought
we could do better. So, we took a little over 300,000 protein sequences and generated metapredict-hybrid scores
for those sequences. We then fed those sequences and the corresponding metapredict-hybrid scores and generated
a new bidirectional recurrent neural network (BRNN) using PARROT. We then tested this new network against the
original metapredict-hybrid predictions and the original metapredict network. The new network that was trained

2 Chapter 1. Getting Started with metapredict
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on metapredict-hybrid scores actually outperformed the metapredict-hybrid predictions when benchmarking against
Disprot-PDB. Importantly, this new (super accurate) network was only 30% slower than the original metapredict
network, which is substantially better than the 70% hit that metapredict-hybrid took.

TL;DR We made the original metapredict predictor using a network trained on consensus scores from MobiDB. We
then trained a network on AlphaFold2 pLDDT scores. Next, we made a predictor that combined prediction values from
the original metapredict predictor and the AlphaFold2 pLDDT predictor to make very accurate disorder predictions.
Finally, we took hundreds of thousands of proteins, generated disorder prediction scores using the aforementioned
combination of the original metapredict predictions and the AlphaFold2 predictions, and then trained our final network
on those scores. That’s pretty dang meta.

1.5 Generating AlphaFold2 pLDDT scores in metapredict

In addition, metapredict offers predicted confidence scores from AlphaFold2. These predicted scores use a bidirec-
tional recurrent neural network (BRNN) trained on the per residue pLDDT (predicted IDDT-Ca) confidence scores
generated by AlphaFold2 (AF2). The confidence scores (pLDDT) from the proteomes of Danio rerio, Candida albi-
cans, Mus musculus, Escherichia coli, Drosophila melanogaster, Methanocaldococcus jannaschii, Plasmodium fal-
ciparum, Mycobacterium tuberculosis, Caenorhabditis elegans, Dictyostelium discoideum, Trypanosoma cruzi, Sac-
charomyces cerevisiae, Schizosaccharomyces pombe, Rattus norvegicus, Homo sapiens, Arabidopsis thaliana, Zea
mays, Leishmania infantum, Staphylococcus aureus, Glycine max, and Oryza sativa were used to generate the BRNN.
These confidence scores measure the local confidence that AlphaFold2 has in its predicted structure. The scores go
from 0-100 where 0 represents low confidence and 100 represents high confidence. For more information, please see:
Highly accurate protein structure prediction with AlphaFold https://doi.org/10.1038/s41586-021-03819-2. In describ-
ing these scores, the team states that regions with pLDDT scores of less than 50 should not be interpreted except as
possible disordered regions.

1.6 What might the predicted confidence scores from AlphaFold2 be
used for?

These scores can be used for many applications such as generating a quick preview of which regions of your protein
of interest AF2 might be able to predict with high confidence, or which regions of your protein might be disordered.
AF2 is not (strictly speaking) a disorder predictor, and the confidence scores are not directly representative of protein
disorder. Therefore, any conclusions drawn with regards to disorder from predicted AF2 confidence scores should
be interpreted with care, but they may be able to provide an additional metric to assess the likelihood that any given
protein region may be disordered.

1.7 Why is metapredict useful?

Consensus disorder scores are really useful as they distribute the biases and uncertainty associated with any specific
predictor. However, a drawback of consensus disorder databases (like MobiDB) is that they can only give you values
of previously predicted protein sequences. metapredict provides a way around this, allowing arbitrary sequences to
be analyzed!

The major advantages that metapredict offers over existing predictors is performance, ease of use, and ease of in-
stallation. Given metapredict uses a pre-trained bidirectional recurrent neural network, on hardware we’ve tested
metapredict gives ~10,000 residues per second prediction power. This means that predicting disorder across entire
proteomes is accessible in minutes - for example it takes ~20 minutes to predict disorder for every human protein
in the reviewed human proteome (~23000 sequences). We provide metapredict as a simple-to-use Python library to
integrate into existing Python workflows, and as a set of command-line tools for the stand-alone prediction of data
from direct input or from FASTA files.

1.5. Generating AlphaFold2 pLDDT scores in metapredict 3
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1.8 How to cite metapredict

If you use metapredict for your work, please cite the metapredict paper -

Emenecker RJ, Griffith D, Holehouse AS, metapredict: a fast, accurate, and easy-to-use predictor of consensus disor-
der and structure, Biophysical Journal (2021), doi: https:// doi.org/10.1016/j.bpj.2021.08.039.

Additionally, if you are using V2 (which is now the default) please make this clear in methods section. You should
not feel obliged to cite the V2 preprint, and this pre-print exists soley so we could fully document the changes and test
some edge cases in an accessible and clear way.

1.9 Installation

metapredict is available through GitHub or the Python Package Index (PyPI). To install through PyPI, run

$ pip install metapredict

To clone the GitHub repository and gain the ability to modify a local copy of the code, run

$ git clone https://github.com/idptools/metapredict.git
$ cd metapredict
$ pip install .

This will install metapredict locally. If you modify the source code in the local repository, be sure to re-install with
pip.

1.10 Known installation/execution issues

Below we include documentation on known issues.

1.11 macOS libiomp clash

PyTorch currently ships with its own version of the OpenMP library (libiomp.dylib). Unfortunately when numpy
is installed from conda (although not from pip) this leads to a collision because the conda-derived numpy library
also includes a local copy of the libiomp5.dylib library. This leads to the following error message (included here
for google-ability).

OMP: Error #15: Initializing libiomp5.dylib, but found libomp.dylib already
→˓initialized.
OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into
→˓the program.
That is dangerous, since it can degrade performance or cause incorrect results. The
→˓best thing to
do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by
→˓avoiding static
linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented
→˓workaround you
can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to
→˓continue to execute,

(continues on next page)
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(continued from previous page)

but that may cause crashes or silently produce incorrect results. For more
→˓information,
please see http://www.intel.com/software/products/support/.

To avoid this error we make the executive decision to ignore this clash. This has largely not appeared to have any
deleterious issues on performance or accuracy across the tests run. If you are uncomfortable with this then the code
in metapredict/__init__.py can be edited with IGNORE_LIBOMP_ERROR set to False and metapredict
re-installed from the source directory.

1.12 Testing

To see if your installation of metapredict is working properly, you can run the unit test included in the package by
navigating to the metapredict/tests folder within the installation directory and running:

$ pytest -v

1.13 Example datasets

Example data that can be used with metapredict can be found in the metapredict/data folder on GitHub. The example
data set is just a .fasta file containing 5 protein sequences.

1.12. Testing 5
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CHAPTER 2

metapredict from the command-line

2.1 Using the original metapredict network

We have recently updated the network that makes predictions for metapredict to massively improve accuracy. How-
ever, if you need to use the original metapredict predictor as opposed to our new, updated predictor, use the -l or
--legacy flag!

2.2 Predicting Disorder from Fasta Files

The metapredict-predict-disorder command from the command line takes a .fasta file as input and returns
disorder scores for the sequences in the FASTA file.

Once metapredict is installed, the user can run metapredict-predict-disorder from the command line:

$ metapredict-predict-disorder <Path to .fasta file>

Example:

$ metapredict-predict-disorder /Users/thisUser/Desktop/interestingProteins.fasta

Additional Usage:

Specifying where to save the output - If you would like to specify where to save the output, simply use the -o or
--output-file flag and then specify the file path and file name. By default this command will save the output file
as disorder_scores.csv to your current working directory. However, you can specify the file name in the output path.

Example:

$ metapredict-predict-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/disorder_predictions/my_disorder_predictions.csv

Using the original metapredict network- To use the original metapredict network, simply use the -l or --legacy
flag.

7
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Example:

$ metapredict-predict-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/disorder_predictions/my_disorder_predictions.csv -l

2.3 Predicting Disorder from a Sequence

metapredict-quick-predict is a command that will let you input a sequence and get disorder values imme-
diately printed to the terminal. The only argument that can be input is the sequence.

Example:

$ metapredict-quick-predict
→˓ISQQMQAQPAMVKSQQQQQQQQQQHQHQQQQLQQQQQLQMSQQQVQQQGIYNNGTIAVAN

Using the original metapredict network- To use the original metapredict network, simply use the -l or --legacy
flag.

Example:

$ metapredict-quick-predict
→˓ISQQMQAQPAMVKSQQQQQQQQQQHQHQQQQLQQQQQLQMSQQQVQQQGIYNNGTIAVA -l

2.4 Predicting AlphaFold2 Confidence Scores from a Fasta File

The metapredict-predict-pLDDT command from the command line takes a .fasta file as input and returns
predicted AlphaFold2 pLDDT confidence scores for the sequences in the FASTA file.

$ metapredict-predict-pLDDT <Path to .fasta file>

Example

$ metapredict-predict-pLDDT /Users/thisUser/Desktop/interestingProteins.fasta

Additional Usage

Specify where to save the output - If you would like to specify where to save the output, simply use the -o
or --output-file flag and then specify the file path. By default this command will save the output file as
pLDDT_scores.csv to your current working directory. However, you can specify the file name in the output path.

Example

$ metapredict-predict-pLDDT /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/disorder_predictions/my_pLDDT_predictions.csv

2.5 Graphing Disorder from a Fasta file

The metapredict-graph-disorder command from the command line takes a .fasta file as input and returns
a graph for every sequence within the .fasta file. Warning This will return a graph for every sequence in the FASTA
file.

8 Chapter 2. metapredict from the command-line
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$ metapredict-graph-disorder <Path to .fasta file>

Example

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta

If no output directory is specified, this function will make an output directory in the current working directory called
disorder_out. This directory will hold all generated graphs.

Additional Usage

Adding AlphaFold2 Confidence Scores - To add predicted AlphaFold2 pLDDT confidence scores, simply use the
-p or --pLDDT flag.

Example

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta p

Specifying where to save the output - To specify where to dave the output, simply use the -o or
--output-directory flag.

Example

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/FolderForCoolPredictions

Changing resolution of saved graphs - By default, the output graphs have a DPI of 150. However, the user can
change the DPI of the output (higher values have greater resolution but take up more space). To change the DPI
simply add the flag -D or --dpi followed by the wanted DPI value.

Example

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/DisorderGraphsFolder/ -D 300

Changing the file type - By default the graphs will save as .png files. However, you can specify the file type by calling
--filetype and then specifying the file type. Any matplotlib compatible file extension should work (for example,
pdf).

Example

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/DisorderGraphsFolder/ --filetype pdf

Indexing file names - If you would like to index the file names with a leading unique integer starting at 1, use the
--indexed-filenames flag.

Example

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/DisorderGraphsFolder/ --indexed-filenames

Changing the disorder threshold line on the graph - If you would like to change the disorder threshold line plotted
on the graph, use the --disorder-threshold flag followed by some value between 0 and 1. Default is 0.3.

Example

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/DisorderGraphsFolder/ --disorder-threshold 0.5

2.5. Graphing Disorder from a Fasta file 9
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Using the original metapredict network- To use the original metapredict network, simply use the -l or --legacy
flag.

Example:

$ metapredict-graph-disorder /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/DisorderGraphsFolder/ --disorder-threshold 0.5 -l

2.6 Quick Graphing

metapredict-quick-graph is a command that will let you input a sequence and get a plot of the disorder back
immediately. You cannot input fasta files for this command. The command only takes three arguments, 1. the sequence
2. optional DPI -D or --dpi of the output graph which defaults to 150 DPI, and 3. optional to include predicted
AlphaFold2 confidence scores, use the p or --pLDDT flag.

Example:

$ metapredict-quick-graph ISQQMQAQPAMVKSQQQQQQQQQQHQHQQQQLQQQQQLQMSQQQVQQQGIYNNGTIAVAN

Example:

$ metapredict-quick-graph
→˓ISQQMQAQPAMVKSQQQQQQQQQQHQHQQQQLQQQQQLQMSQQQVQQQGIYNNGTIAVAN -p

Example:

$ metapredict-quick-graph
→˓ISQQMQAQPAMVKSQQQQQQQQQQHQHQQQQLQQQQQLQMSQQQVQQQGIYNNGTIAVAN -D 200

Using the original metapredict network- To use the original metapredict network, simply use the -l or --legacy
flag.

Example:

$ metapredict-quick-graph
→˓ISQQMQAQPAMVKSQQQQQQQQQQHQHQQQQLQQQQQLQMSQQQVQQQGIYNNGTIAVAN -l

2.7 Graphing using Uniprot ID

metapredict-uniprot is a command that will let you input any Uniprot ID and get a plot of the disorder for
the corresponding protein. The default behavior is to have a plot automatically appear. Apart from the Uniprot ID
which is required for this command, the command has four possible additional optional arguments, 1. To include
predicted AlphaFold2 pLDDT confidence scores, use the -p or --pLDDT flag. DPI can be changed with the -D or
--dpi flags, default is 150 DPI, 3. Using -o or --output-file will save the plot to a specified directory (default
is current directory) - filenames and file extensions (pdf, jpg, png, etc) can be specified here. If there is no file name
specified, it will save as the Uniprot ID and as a .png, 4. -t or --title will let you specify the title of the plot. By
default the title will be Disorder for followed by the Uniprot ID.

Example:

$ metapredict-uniprot Q8RYC8

Example:
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$ metapredict-uniprot Q8RYC8 -p

Example:

$ metapredict-uniprot Q8RYC8 -D 300

Example:

$ metapredict-uniprot Q8RYC8 -o /Users/ThisUser/Desktop/MyFolder/DisorderGraphs

Example:

$ metapredict-uniprot Q8RYC8 -o /Users/ThisUser/Desktop/MyFolder/DisorderGraphs/my_
→˓graph.png

Example:

$ metapredict-uniprot Q8RYC8 -t ARF19

Using the original metapredict network- To use the original metapredict network, simply use the -l or --legacy
flag.

Example:

$ metapredict-uniprot Q8RYC8 -l

2.8 Graphing disorder using the common name of a protein

Sometimes you just don’t know the Uniprot ID for your favorite protein, and looking it up can be a pain. With the
metapredict-name command, you can input the common name of your favorite protein and get a graph in return.
Metapredict will also print the name of the organisms and the uniprot ID it found so you know you’re looking at the
correct protein. This is because this functionality queries your input protein name on Uniprot and takes the top hit.
Sometimes this is the protein you’re looking for, but not always. To increase the likelihood of success, use your protein
name and the organism name for this command.

Example

$ metapredict-name p53

will graph the metapredict disorder scores for the Homo sapiens p53 protein. This is because Homo sapiens p53 is the
top hit on Uniprot when you search p53. However. . .

$ metapredict-name p53 chicken

will graph the p53 from Gallus gallus!

Additional Usage

Changing the DPI

Changing the DPI will adjust the resolution of the graph. To change the DPI, use the -D or --dpi flag.

Example

$ metapredict-name p53 -D 300
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Graphing predicted pLDDT scores

To add predicted pLDDT scores to the graph, use the -p or --pLDDT flag.

Example

$ metapredict-name p53 -p

Changing the title

To change the title, use the -t or --title flag.

Example

$ metapredict-name p53 -t my_cool_graph_of_p53

Using the legacy version of metapredict

To use the legacy version of metapredict for your disorder scores, use the -l or --legacy flag.

Example

$ metapredict-name p53 -l

Printing the full Uniprot ID to your terminal

To have your terminal print the entire Uniprot ID as well as the full protein sequence from your specified protein upon
graphing, use the -v or --verbose flag.

Example

$ metapredict-name p53 -v

Turning off all printing to the terminal

By default, the metapredict-name command prints the uniprot ID as well as other information related to your protein
to the terminal. The purpose of this is to make it explicitly clear which protein was graphed because grabbing the top
hit from Uniprot does not guarantee that it is the protein you want or expected. However, this behavior can be turned
off by using the -s or --silent flag.

Example

$ metapredict-name p53 -s

2.9 Graphing Predicted AlphaFold2 pLDDT Scores from a fasta file

The metapredict-graph-pLDDT command from the command line takes a .fasta file as input and returns a graph
of the predicted AlphaFold2 pLDDT confidence score for every sequence within the .fasta file. Warning This will
return a graph for every sequence in the FASTA file.

$ metapredict-graph-pLDDT <Path to .fasta file>

Example

$ metapredict-graph-pLDDT /Users/thisUser/Desktop/interestingProteins.fasta

If no output directory is specified, this function will make an output directory in the current working directory called
pLDDT_out. This directory will hold all generated graphs.
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Additional Usage

Specifying where to save the output - To specify where to dave the output, simply use the -o or
--output-directory flag.

Example

$ metapredict-graph-pLDDT /Users/thisUser/Desktop/interestingProteins.fasta -o /Users/
→˓thisUser/Desktop/FolderForCoolPredictions

Changing resolution of saved graphs - By default, the output graphs have a DPI of 150. However, the user can
change the DPI of the output (higher values have greater resolution but take up more space). To change the DPI
simply add the flag -D or --dpi followed by the wanted DPI value.

Example

$ metapredict-graph-pLDDT /Users/thisUser/Desktop/interestingProteins.fasta -o /Users/
→˓thisUser/Desktop/pLDDTGraphsFolder/ -D 300

Changing the file type - By default the graphs will save as .png files. However, you can specify the file type by calling
--filetype and then specifying the file type. Any matplotlib compatible file extension should work (for example,
pdf).

Example

$ metapredict-graph-pLDDT /Users/thisUser/Desktop/interestingProteins.fasta -o /Users/
→˓thisUser/Desktop/pLDDTGraphsFolder/ --filetype pdf

Indexing file names - If you would like to index the file names with a leading unique integer starting at 1, use the
--indexed-filenames flag.

Example

$ metapredict-graph-pLDDT /Users/thisUser/Desktop/interestingProteins.fasta -o /Users/
→˓thisUser/Desktop/pLDDTGraphsFolder/ --indexed-filenames

2.10 Predicting IDRs from a fasta file

The metapredict-predict-idrs command from the command line takes a .fasta file as input and returns a
.fasta file containing the IDRs for every sequence from the input .fasta file.

$ metapredict-predict-idrs <Path to .fasta file>

Example

$ metapredict-predict-idrs /Users/thisUser/Desktop/interestingProteins.fasta

Additional Usage

specifying where to save the output - If you would like to specify where to save the output, simply use the -o or
--output-file flag and then specify the file path and file name.

Example

$ metapredict-predict-idrs /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/disorder_predictions/my_idrs.fasta
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Using the original metapredict predictor To use the original metapredict predictor as opposed to our new, updated
predictor, use the -l or --legacy flag!

Example

$ metapredict-predict-idrs /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/disorder_predictions/my_idrs.fasta -l

Changing output threshold for disorder- To change the cutoff value for something to be considered disordered,
simply use the --threshold flag and then specify your value. For legacy, the default is 0.42. For the new version
of metapredict, the value is 0.5.

Example

$ metapredict-predict-idrs /Users/thisUser/Desktop/interestingProteins.fasta -o /
→˓Users/thisUser/Desktop/disorder_predictions/my_idrs.fasta --threshold 0.3
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CHAPTER 3

metapredict in Python

In addition to using metapredict from the command line, you can also use it directly in Python. This enables metapre-
dict to be incorporated into your bioinformatic workflows with ease

First import metapredict:

import metapredict as meta

Once metapredict is imported, you can work with individual sequences or .fasta files. For a list of all metapredict’s
public-facing functions and their documentation click here

3.1 Important update to predict_disorder_domains() function for V2.0
and above

As of February 15, 2022 we have updated metapredict to V2. V2 provides a major improvement in accuracy and inter-
pretability, and works by incorporating in predictions made from AlphaFold2 to provide a new underlying prediction
network. The original metapredict network is still available using the legacy=True flag. For more information,
please see the section on the update Major update to metapredict predictions to increase overall accuracy below. In
addition, this update changes the functionality of the predict_disorder_domains() function, so please read
the documentation on that function if you were using it previously!

We recently released a preprint documenting all these changes and more!

3.2 Predicting Disorder

The predict_disorder() function will return a list of predicted disorder consensus values for the residues of
the input sequence. The input sequence should be a string made of valid amino acids. Running -

meta.predict_disorder("DSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLR")

would output -
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[1, 1, 1, 1, 0.957, 0.934, 0.964, 0.891, 0.863, 0.855, 0.793, 0.719, 0.665, 0.638, 0.
→˓576, 0.536, 0.496, 0.482, 0.306, 0.152, 0.096, 0.088, 0.049, 0.097, 0.235, 0.317, 0.
→˓341, 0.377, 0.388, 0.412, 0.46, 0.47, 0.545, 0.428]

Additional Usage:

Disabling prediction value normalization - By default, output prediction values are normalized between 0 and 1.
However, some of the raw values from the predictor are slightly less than 0 or slightly greater than 1. The negative
values are simply replaced with 0 and the values greater than 1 are replaced with 1 by default. However, the user can
get the raw prediction values by specifying normalized=False as a second argument in meta.predict_disorder.
There is not a very good reason to do this, and it is generally not recommended. However, we wanted to give users the
maximum amount of flexibility when using metapredict, so we made it an option.

meta.predict_disorder("DSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLR", normalized=False)

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.predict_disorder("DSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLR", legacy=True)

3.3 Predicting AlphaFold2 Confidence Scores

The predict_pLDDT function will return a list of predicted AlphaFold2 pLDDT confidence scores for each residue
of the input sequence. The input sequence should be a string made of valid amino acids. Running -

meta.predict_pLDDT("DAPPTSQEHTQAEDKERD")

would output -

[35.7925, 40.4579, 46.3753, 46.2976, 42.3189, 42.0248, 43.5976, 40.7481, 40.1676, 41.
→˓9618, 43.3977, 43.938, 41.8352, 44.0462, 44.5382, 46.3081, 49.2345, 46.0671]

3.4 Predicting Disorder Domains:

The predict_disorder_domains() function takes in an amino acid sequence and returns a DisorderObject.
The DisorderObject has 6 dot variables that can be called to get information about your input sequence. They are as
follows:

.sequence [str] Amino acid sequence

.disorder [list or np.ndaarray] Hybrid disorder score

.disordered_domain_boundaries [list] List of domain boundaries for IDRs using Python indexing

.folded_domain_boundaries [list] List of domain boundaries for folded domains using Python indexing

.disordered_domains [list] List of the actual sequences for IDRs

.folded_domains [list] List of the actual sequences for folded domains

Examples

seq = meta.predict_disorder_domains(
→˓"MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLVSLPPVGSLVVYFPQGHSEQVAASMQKQTDFIPNYPNLPSKLICLLHS")
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Now we can call the various dot values for seq.

Getting the sequence

print(seq.sequence)

returns

MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLVSLPPVGSLVVYFPQGHSEQVAASMQKQTDFIPNYPNLPSKLICLLHS

Getting the disorder scores

print(seq.disorder)

returns

[0.922 0.9223 0.9246 0.9047 0.8916 0.8956 0.8931 0.883 0.8613 0.8573
0.852 0.8582 0.8614 0.8455 0.826 0.7974 0.7616 0.7248 0.6782 0.6375
0.5886 0.5476 0.5094 0.4774 0.4472 0.4318 0.4266 0.4222 0.3953 0.3993
0.3904 0.4004 0.3962 0.3721 0.3855 0.3582 0.3456 0.3682 0.3488 0.3274
0.3258 0.2937 0.2864 0.3004 0.3358 0.3815 0.4397 0.4594 0.4673 0.4535
0.4446 0.4481 0.4546 0.4454 0.4549 0.4564 0.4677 0.4539 0.4713 0.49
0.4934 0.4835 0.4815 0.4692 0.4548 0.4856 0.495 0.4809 0.502 0.4944
0.4612 0.4561 0.436 0.4203 0.3784 0.3624 0.3739 0.3983 0.4348 0.4369]

Getting the disorder domain boundaries

print(seq.disordered_domain_boundaries)

returns

[[0, 23]]

Where each nested list is the boundaries for a specific disordered region and the first element in each list is the start of
that region and the second element is the end of that region.

Getting the folded domain boundaries

print(seq.folded_domain_boundaries)

returns

[[23, 80]]

Where each nested list is the boundaries for a specific folded region and the first element in each list is the start of that
region and the second element is the end of that region.

Getting the disordered domain sequences

print(seq.disordered_domains)

returns

['MKAPSNGFLPSSNEGEKKPINSQ']

Where each element in the list is a specific disordered region identified in the sequence.

Getting the folded domain sequences

3.4. Predicting Disorder Domains: 17
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print(seq.folded_domains)

returns

['LWHACAGPLVSLPPVGSLVVYFPQGHSEQVAASMQKQTDFIPNYPNLPSKLICLLHS']

Where each element in the list is a specific folded region identified in the sequence.

Additional Usage

Altering the disorder theshhold - To alter the disorder threshold, simply set disorder_threshold=my_value
where my_value is a float. The higher the threshold value, the more conservative metapredict will be for designating
a region as disordered. Default = 0.5 (V2) and 0.42 (legacy).

Example

meta.predict_disorder_domains("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV", disorder_
→˓threshold=0.3)

Altering minimum IDR size - The minimum IDR size will define the smallest possible region that could be considered
an IDR. In other words, you will not be able to get back an IDR smaller than the defined size. Default is 12.

Example

meta.predict_disorder_domains("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV", minimum_IDR_size =
→˓10)

Altering the minimum folded domain size - The minimum folded domain size defines where we expect the limit
of small folded domains to be. NOTE this is not a hard limit and functions more to modulate the removal of large
gaps. In other words, gaps less than this size are treated less strictly. Note that, in addition, gaps < 35 are evaluated
with a threshold of 0.35 x disorder_threshold and gaps < 20 are evaluated with a threshold of 0.25 x dis-
order_threshold. These two lengthscales were decided based on the fact that coiled-coiled regions (which are IDRs
in isolation) often show up with reduced apparent disorder within IDRs but can be as short as 20-30 residues. The
folded_domain_threshold is used based on the idea that it allows a ‘shortest reasonable’ folded domain to be identified.
Default=50.

Example

meta.predict_disorder_domains("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV", minimum_folded_
→˓domain = 60)

Altering gap_closure - The gap closure defines the largest gap that would be closed. Gaps here refer to a scenario
in which you have two groups of disordered residues separated by a ‘gap’ of not disordered residues. In general
large gap sizes will favor larger contiguous IDRs. It’s worth noting that gap_closure becomes relevant only when
minimum_region_size becomes very small (i.e. < 5) because really gaps emerge when the smoothed disorder fit is
“noisy”, but when smoothed gaps are increasingly rare. Default=10.

Example

meta.predict_disorder_domains("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV", gap_closure = 5)

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

predict_disorder_domains("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV", legacy=True)
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3.5 Calculating Percent Disorder:

The percent_disorder() function will return the percent of residues in a sequence that are predicted to be
disordered.

Running -

meta.percent_disorder("DSSPEAPAEPPKDVPHDWLPYSYVFGLGTPHGHPPADFGLR")

would output -

58.537

Percent_disorder() has two modes defined by the mode keyword: threshold and disorder_domains.

The default usage is with the threshold mode. In this case, each residue is evaluated against a threshold value,
where disorder scores above that threshold count towards disordered residues. This mode uses a threshold value of 0.5
(for V2) or 0.3 (for legacy), although the threshold can be changed (see below).

The alternative mode, disorder_domains, makes use of metapredictis predict_disorder_domains()
functionality. Now, the sequence is divided up into IDRs and folded domains, and then the percentage disor-
dered is based on what fraction of residues fall into IDRs. The underlying disorder domain prediction uses the
default disorder thresholds as per the predict_disorder_domains()` function, but this can be
over-ridden if a ``disorder_threshold keyword is passed. For example:

meta.percent_disorder("DSSPEAPAEPPKDVPHDWLPYSYVFGLGTPHGHPPADFGLR", mode='disorder_
→˓domains')

would output -

100.0

because the short ‘folded’ region where residue have a disorder score below the threshold are incorporated into the
IDR in the predict_disorder_domains() function.

Additional Usage:

Changing the cutoff value - If you want to be more strict in what you consider to be disordered for calculating percent
disorder of an input sequence, you can simply specify the cutoff value by adding the argument cutoff=<value>
where the <value> corresponds to the percent (expressed as a fraction) you would like to use as the cutoff (for
example, 0.8 would be 80%).

Example:

meta.percent_disorder("DSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLR", disorder_threshold= 0.8)

would output

26.471

The higher the cutoff value, the higher the value any given predicted residue must be greater than or equal to in order
to be considered disordered when calculating the final percent disorder for the input sequence.

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.percent_disorder("DSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLR", disorder_threshold= 0.8,
→˓legacy=True)
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would output

29.412

3.6 Graphing Disorder

The graph_disorder() function will show a plot of the predicted disorder consensus values across the input
amino acid sequence. Running -

meta.graph_disorder(
→˓"GHPGKQRNPGEHHSSRNVKRNWNNSPSGPNEGRESQEERKTPPRRGGQQSGESHNQDETNKPNPSDNHHEEEKADDNAHRGNDSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLRAKRVLRENFVQCEKAWHRRRLAHPYNRINMQWLDVFDGDCWLAPQLCFGFQFGHDRPVWKIFWYHERGDLRYKLILKDHANVLNKPAHSRNARCESSAPSHDPHGNANSYDKKVTTPDPTEIKSSQESGNSNPDHSPHMPGRDMQEQPGEEPGGHPEKRLIRSKGKTDYKDNRSPRNNPSTDPEWESAHFQWSHDPNEQWLHNLGWPMRWMWQLPNPGIEPFSLNTRKKAPSWINLLYNADPCKTQDDERDCEHHMYQIQPIAPVPKIAMHYCTCFPRVHRIPC
→˓")

would output -

Additional Usage

Adding Predicted AlphaFold2 Confidence Scores - To add predicted AlphaFold2 pLDDT confidence scores, simply
specify pLDDT_scores=True.

Example

seq =
→˓'GHPGKQRNPGEHHSSRNVKRNWNNSPSGPNEGRESQEERKTPPRRGGQQSGESHNQDETNKPNPSDNHHEEEKADDNAHRGNDSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLRAKRVLRENFVQCEKAWHRRRLAHPYNRINMQWLDVFDGDCWLAPQLCFGFQFGHDRPVWKIFWYHERGDLRYKLILKDHANVLNKPAHSRNARCESSAPSHDPHGNANSYDKKVTTPDPTEIKSSQESGNSNPDHSPHMPGRDMQEQPGEEPGGHPEKRLIRSKGKTDYKDNRSPRNNPSTDPEWESAHFQWSHDPNEQWLHNLGWPMRWMWQLPNPGIEPFSLNTRKKAPSWINLLYNADPCKTQDDERDCEHHMYQIQPIAPVPKIAMHYCTCFPRVHRIPC
→˓'

meta.graph_disorder(seq, pLDDT_scores=True)

would output -

Changing title of generated graph - There are two parameters that the user can change for graph_disorder(). The
first is the name of the title for the generated graph. The name by default is blank and the title of the graph is simply
Predicted protein disorder. However, the title can be specified by specifying title = "my cool title" would
result in a title of my cool title. Running -

meta.graph_disorder(
→˓"GHPGKQRNPGEHHSSRNVKRNWNNSPSGPNEGRESQEERKTPPRRGGQQSGESHNQDETNKPNPSDNHHEEEKADDNAHRGNDSSPEAPAEPPKDVPHDWLYSYVFLTHHPADFLRAKRVLRENFVQCEKAWHRRRLAHPYNRINMQWLDVFDGDCWLAPQLCFGFQFGHDRPVWKIFWYHERGDLRYKLILKDHANVLNKPAHSRNARCESSAPSHDPHGNANSYDKKVTTPDPTEIKSSQESGNSNPDHSPHMPGRDMQEQPGEEPGGHPEKRLIRSKGKTDYKDNRSPRNNPSTDPEWESAHFQWSHDPNEQWLHNLGWPMRWMWQLPNPGIEPFSLNTRKKAPSWINLLYNADPCKTQDDERDCEHHMYQIQPIAPVPKIAMHYCTCFPRVHRIPC
→˓", title = "MadeUpProtein")

(continues on next page)
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(continued from previous page)

would output -

Changing the resolution of the generated graph - By default, the output graph has a DPI of 150. However, the user
can change the DPI of the generated graph (higher values have greater resolution). To do so, simply specify DPI =
<number> where <number is an integer.

Example:

meta.graph_disorder("DAPPTSQEHTQAEDKERD", DPI=300)

Changing the disorder threshold line - The disorder threshold line for graphs defaults to 0.3. However, if you want
to change where the line designating the disorder cutoff is, simply specify disorder_threshold = <float>
where <float> is a value between 0 and 1.

Example

meta.graph_disorder("DAPPTSQEHTQAEDKERD", disorder_threshold=0.5)

Adding shaded regions to the graph - If you would like to shade specific regions of your generated graph (perhaps
shade the disordered regions), you can specify shaded_regions=[[list of regions]] where the list of
regions is a list of lists that defines the regions to shade.

Example

meta.graph_disorder("DAPPTSQEHTQAEDKERDDAPPTSQEHTQAEDKERDDAPPTSQEHTQAEDKERD", shaded_
→˓regions=[[1, 20], [30, 40]])

In addition, you can specify the color of the shaded regions by specifying shaded_region_color. The default
for this is red. You can specify any matplotlib color or a hex color string.

Example

meta.graph_disorder("DAPPTSQEHTQAEDKERDDAPPTSQEHTQAEDKERDDAPPTSQEHTQAEDKERD", shaded_
→˓regions=[[1, 20], [30, 40]], shaded_region_color="blue")

Saving the graph - By default, the graph will automatically appear. However, you can also save the graph if you’d
like. To do this, simply specify output_file = path_where_to_save/filename.file_extension.
For example, output_file=/Users/thisUser/Desktop/cool_graphs/myCoolGraph.png. You can
save the file with any valid matplotlib extension (.png, .pdf, etc.).

Example

meta.graph_disorder("DAPPTSQEHTQAEDKER", output_file=/Users/thisUser/Desktop/cool_
→˓graphs/myCoolGraph.png)
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Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.graph_disorder("DAPPTSQEHTQAEDKER", legacy=True)

3.7 Graphing AlphaFold2 Confidence Scores

The graph_pLDDT function will show a plot of the predicted AlphaFold2 pLDDT confidence scores across the input
amino acid sequence.

Example

meta.graph_pLDDT("DAPTSQEHTQAEDKERDSKTHPQKKQSPS")

This function has all of the same functionality as graph_disorder.

3.8 Predicting Disorder From a .fasta File:

By using the predict_disorder_fasta() function, you can predict disorder values for the amino acid se-
quences in a .fasta file. By default, this function will return a dictionary where the keys in the dictionary are the fasta
headers and the values are the consensus disorder predictions of the amino acid sequence associated with each fasta
header in the original .fasta file.

Example:

meta.predict_disorder_fasta("file path to .fasta file/fileName.fasta")

An actual file path would look something like:

meta.predict_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta")

Additional Usage:

Save the output values - By default the predict_disorder_fasta function will immediately return a dictionary. However,
you can also save the output to a .csv file by specifying output_file = "location you want to save
the file to". When specifying the file path, you also want to specify the file name. The first cell of each row
will contain a fasta header and the subsequent cells in that row will contain predicted consensus disorder values for
the protein associated with the fasta header.

Example:

meta.predict_disorder_fasta("file path to .fasta file/fileName.fasta", output_file=
→˓"file path where the output .csv should be saved")

An actual filepath would look something like:

meta.predict_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta", output_
→˓file="/Users/thisUser/Desktop/cool_predictions.csv")

Get raw prediction values - By default, this function will output prediction values that are normalized between 0
and 1. However, some of the raw values from the predictor are slightly less than 0 or slightly greater than 1. The
negative values are simply replaced with 0 and the values greater than 1 are replaced with 1 by default. If you want
the raw values simply specify normalized=False. There is not a very good reason to do this, and it is generally
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not recommended. However, we wanted to give users the maximum amount of flexibility when using metapredict, so
we made it an option.

Example:

meta.predict_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta",
→˓normalized=False)

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.predict_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta",
→˓legacy=True)

3.9 Predicting AlphaFold2 confidence scores From a .fasta File

Just like with predict_disorder_fasta, you can use predict_pLDDT_fasta to get predicted AlphaFold2
pLDDT confidence scores from a fasta file. All the same functionality in predict_disorder_fasta is in
predict_pLDDT_fasta.

Example

meta.predict_pLDDT_fasta("/Users/thisUser/Desktop/coolSequences.fasta")

3.10 Predict Disorder Using Uniprot ID

By using the predict_disorder_uniprot() function, you can return predicted consensus disorder values for
the amino acid sequence of a protein by specifying the Uniprot ID.

Example

meta.predict_disorder_uniprot("Q8N6T3")

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.predict_disorder_uniprot("Q8N6T3", legacy=True)

3.11 Predicting AlphaFold2 Confidence Scores Using Uniprot ID

By using the predict_pLDDT_uniprot function, you can generate predicted AlphaFold2 pLDDT confidence
scores by inputting a Uniprot ID.

Example

meta.predict_pLDDT_uniprot('P16892')
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3.12 Generating Disorder Graphs From a .fasta File:

By using the graph_disorder_fasta() function, you can graph predicted consensus disorder values for the
amino acid sequences in a .fasta file. The graph_disorder_fasta() function takes a .fasta file as input and
by default will return the graphs immediately. However, you can specify output_dir=path_to_save_files
which result in a .png file saved to that directory for every sequence within the .fasta file.

You cannot specify the output file name here! By default, the file name will be the first 14 characters of the FASTA
header followed by the filetype as specified by filetype. If you wish for the files to include a unique leading number
(i.e. X_rest_of_name where X starts at 1 and increments) then set indexed_filenames = True. This can be
useful if you have sequences where the 1st 14 characters may be identical, which would otherwise overwrite an output
file. By default this will return a single graph for every sequence in the FASTA file.

WARNING - This command will generate a graph for *every* sequence in the .fasta file. If you have 1,000 sequences
in a .fasta file and you do not specify the output_dir, it will generate 1,000 graphs that you will have to close
sequentially. Therefore, I recommend specifying the output_dir such that the output is saved to a dedicated folder.

Example:

meta.graph_disorder_fasta("file path to .fasta file/fileName.fasta", output_dir="file
→˓path of where to save output graphs")

An actual file path would look something like:

meta.graph_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta", output_dir="/
→˓Users/thisUser/Desktop/folderForGraphs")

Additional Usage

Adding Predicted AlphaFold2 Confidence Scores - To add predicted AlphaFold2 pLDDT confidence scores, simply
specify pLDDT_scores=True.

Example

meta.graph_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta", pLDDT_
→˓scores=True)

Changing resolution of saved graphs - By default, the output files have a DPI of 150. However, the user can change
the DPI of the output files (higher values have greater resolution but take up more space). To change the DPI, specify
DPI=Number where Number is an integer.

Example:

meta.graph_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta", DPI=300,
→˓output_dir="/Users/thisUser/Desktop/folderForGraphs")

Changing the output file type - By default the output file is a .png. However, you can specify the output file type
by using output_filetype="file_type", where file_type is some matplotlib compatible file type (such as
.pdf).

Example

meta.graph_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta", output_dir="/
→˓Users/thisUser/Desktop/folderForGraphs", output_filetype = "pdf")

Indexing generated files - If you would like to index the file names with a leading unique integer starting at 1, set
indexed_filenames=True.

Example
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meta.graph_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta", output_dir="/
→˓Users/thisUser/Desktop/folderForGraphs", indexed_filenames=True)

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.graph_disorder_fasta("/Users/thisUser/Desktop/coolSequences.fasta", output_dir="/
→˓Users/thisUser/Desktop/folderForGraphs", legacy=True)

3.13 Generating AlphaFold2 Confidence Score Graphs from fasta
files

By using the graph_pLDDT_fasta function, you can graph predicted AlphaFold2 pLDDT confidence scores for
the amino acid sequences in a .fasta file. This works the same as graph_disorder_fasta but instead returns
graphs with just the predicted AlphaFold2 pLDDT scores.

meta.graph_pLDDT_fasta("/Users/thisUser/Desktop/coolSequences.fasta", output_dir="/
→˓Users/thisUser/Desktop/folderForGraphs")

3.14 Generating Graphs Using Uniprot ID

By using the graph_disorder_uniprot() function, you can graph predicted consensus disorder values for the
amino acid sequence of a protein by specifying the Uniprot ID.

Example

meta.graph_disorder_uniprot("Q8N6T3")

This function carries all of the same functionality as graph_disorder() including specifying disorder_threshold,
title of the graph, the DPI, and whether or not to save the output.

Example

meta.graph_disorder_uniprot("Q8N6T3", disorder_threshold=0.5, title="my protein",
→˓DPI=300, output_file="/Users/thisUser/Desktop/my_cool_graph.png")

Additional usage

Adding Predicted AlphaFold2 Confidence Scores - To add predicted AlphaFold2 pLDDT confidence scores, simply
specify pLDDT_scores=True.

Example

meta.graph_disorder_uniprot("Q8N6T3", pLDDT_scores=True)

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.graph_disorder_uniprot("Q8N6T3", legacy=True)
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3.15 Generating AlphaFold2 Confidnce Score Graphs Using Uniprot
ID

Just like with disorder predictions, you can also get AlphaFold2 pLDDT confidence score graphs using the Uniprot
ID. This will only display the pLDDT confidence scores and not the predicted disorder scores.

Example

meta.graph_pLDDT_uniprot("Q8N6T3")

3.16 Predicting Disorder Domains using a Uniprot ID:

In addition to inputting a sequence, you can predict disorder domains by inputting a Uniprot ID by using
the predict_disorder_domains_uniprot function. This function has the exact same functionality as
predict_disorder_domains except you can now input a Uniprot ID. This also returns a DisorderedObject.
The DisorderObject has 6 dot variables that can be called to get information about your input sequence. They are as
follows:

.sequence [str] Amino acid sequence

.disorder [list or np.ndaarray] Hybrid disorder score

.disordered_domain_boundaries [list] List of domain boundaries for IDRs using Python indexing

.folded_domain_boundaries [list] List of domain boundaries for folded domains using Python indexing

.disordered_domains [list] List of the actual sequences for IDRs

.folded_domains [list] List of the actual sequences for folded domains

Example

seq = meta.predict_disorder_domains_uniprot('Q8N6T3')

print(seq.disorder)

Using the original metapredict network- To use the original metapredict network, simply set legacy=True.

Example:

meta.predict_disorder_domains_uniprot('Q8N6T3' legacy=True)

3.17 Predicting Disorder Domains from external scores:

The predict_disorder_domains_from_external_scores() function takes in an disorder scores, an
amino acid sequence (optinally), and returns a DisorderObject. This function lets you use other disorder predictor
scores and still use the predict_disorder_domains() functionality. The DisorderObject has 6 dot variables that can be
called to get information about your input sequence. They are as follows:

.sequence [str] Amino acid sequence

.disorder [list or np.ndaarray] Hybrid disorder score

.disordered_domain_boundaries [list] List of domain boundaries for IDRs using Python indexing

.folded_domain_boundaries [list] List of domain boundaries for folded domains using Python indexing
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.disordered_domains [list] List of the actual sequences for IDRs

.folded_domains [list] List of the actual sequences for folded domains

Examples

seq = meta.predict_disorder_domains_from_external_scores(disorder=[0.8577, 0.9313, 0.
→˓9313, 0.9158, 0.8985, 0.8903, 0.8895, 0.869, 0.8444, 0.8594, 0.8643, 0.8605, 0.8697,
→˓ 0.8627, 0.8641, 0.8633, 0.8487, 0.8512, 0.8236, 0.8079, 0.8047, 0.8021, 0.7954, 0.
→˓7867, 0.7797, 0.7982, 0.7842, 0.7614, 0.7931, 0.8166, 0.8298, 0.8222, 0.8227, 0.
→˓8183, 0.8279, 0.838, 0.8535, 0.8512, 0.8464, 0.8469, 0.8322, 0.8265, 0.794, 0.7827,
→˓0.7699, 0.7575, 0.7178, 0.5988], sequence =
→˓'MKAPSNGFLPSSNEGEKKPINSQLMKAPSNGFLPSSNEGEKKPINSQL')

Now we can call the various dot values for seq.

Getting the sequence

print(seq.sequence)

returns

MKAPSNGFLPSSNEGEKKPINSQLMKAPSNGFLPSSNEGEKKPINSQL

Getting the disorder scores

print(seq.disorder)

Getting the disorder domain boundaries

print(seq.disordered_domain_boundaries)

Getting the folded domain boundaries

print(seq.folded_domain_boundaries)

Getting the disordered domain sequences

print(seq.disordered_domains)

Getting the folded domain sequences

print(seq.folded_domains)

Additional Usage

Altering the disorder threshold - To alter the disorder threshold, simply set disorder_threshold=my_value
where my_value is a float. The higher the threshold value, the more conservative metapredict will be for designating
a region as disordered. Default = 0.42

Example

meta.predict_disorder_domains_from_external_scores("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV
→˓", disorder_threshold=0.3)

Altering minimum IDR size - The minimum IDR size will define the smallest possible region that could be considered
an IDR. In other words, you will not be able to get back an IDR smaller than the defined size. Default is 12.

Example
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meta.predict_disorder_domains_from_external_scores("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV
→˓", minimum_IDR_size = 10)

Altering the minimum folded domain size - The minimum folded domain size defines where we expect the limit of
small folded domains to be. NOTE this is not a hard limit and functions more to modulate the removal of large gaps.
In other words, gaps less than this size are treated less strictly. Note that, in addition, gaps < 35 are evaluated with a
threshold of 0.35 x disorder_threshold and gaps < 20 are evaluated with a threshold of 0.25 x disorder_threshold. These
two lengthscales were decided based on the fact that coiled-coiled regions (which are IDRs in isolation) often show
up with reduced apparent disorder within IDRs but can be as short as 20-30 residues. The folded_domain_threshold
is used based on the idea that it allows a ‘shortest reasonable’ folded domain to be identified. Default=50.

Example

meta.predict_disorder_domains_from_external_scores("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV
→˓", minimum_folded_domain = 60)

Altering gap_closure - The gap closure defines the largest gap that would be closed. Gaps here refer to a scenario
in which you have two groups of disordered residues seprated by a ‘gap’ of not disordered residues. In general
large gap sizes will favour larger contiguous IDRs. It’s worth noting that gap_closure becomes relevant only when
minimum_region_size becomes very small (i.e. < 5) because really gaps emerge when the smoothed disorder fit is
“noisy”, but when smoothed gaps are increasingly rare. Default=10.

Example

meta.predict_disorder_domains_from_external_scores("MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLV
→˓", gap_closure = 5)
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CHAPTER 4

Python Module Documentation

4.1 Recommended usage

In general, we recommend using metapredict in Python by first importing metapredict as meta:

import metapredict as meta

The meta module can the be used to call all the user-facing functions. Documentation for these functions is included
below.

4.2 metapredict functions

metapredict.print_metapredict_legacy_network_version()
Function that returns a string with the current trained network version used in disorder prediction. This is useful
to know if updated versions of the network are provided, which will always accompany a version bump so prior
versions of the code will always be available.

Returns Returns a string in the format v<version information>

Return type str

metapredict.print_metapredict_network_version()
Function that returns a string with the current trained network version used in disorder prediction. This is useful
to know if updated versions of the network are provided, which will always accompany a version bump so prior
versions of the code will always be available.

Returns Returns a string in the format v<version information>

Return type str

metapredict.print_performance(seq_len=500, num_seqs=100, verbose=True, legacy=False)
Function that lets you test metapredicts performance on your local hardware.

Parameters
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• seqlen (int) – Length of each random sequence to be tested. Default = 500.

• num_seqs (int) – Number of sequences to compute over. Default = 100.

• verbose (bool) – Flag which, if true, means the function prints a summary when finished. If
false simply returns an integer

• legacy (bool) – Flag which determines if legacy (v1) or updated (v2) metapredict networks
are used.

Returns Returns the nearest number of sequences-per-second metapredict is currently predicting.
For ref, on a spring 2020 MBP this value was ~10,000 sequences per second.

Return type int

metapredict.meta.predict_disorder_domains(sequence, disorder_threshold=None,
minimum_IDR_size=12, mini-
mum_folded_domain=50, gap_closure=10,
normalized=True, return_numpy=True,
legacy=False, return_list=False)

This function takes an amino acid sequence and one or more variable options and returns a data structure called
a DisorderObject. The object parameters associated with this object are defined below.

The previous version of metapredict returned a list of values, which can be obtained instead of the Disordere-
dObject if return_list is set to True.

Parameters

• sequence (str) – Amino acid sequence

• disorder_threshold (float) – Set to None such that it will change to 0.42 for legacy and 0.5
for metapredict. Can still manually set value.

Value that defines what ‘disordered’ is based on the metapredict disorder score. The higher
the value the more stringent the cutoff. Default = 0.5 for new version and 0.42 for legacy
metapredict.

• minimum_IDR_size (int) – Defines the smallest possible IDR. This is a hard limit - i.e. we
CANNOT get IDRs smaller than this. Default = 12.

• minimum_folded_domain (int) – Defines where we expect the limit of small folded do-
mains to be. This is NOT a hard limit and functions to modulate the removal of large
gaps (i.e. gaps less than this size are treated less strictly). Note that, in addition, gaps <
35 are evaluated with a threshold of 0.35*disorder_threshold and gaps < 20 are evaluated
with a threshold of 0.25*disorder_threshold. These two lengthscales were decided based
on the fact that coiled-coiled regions (which are IDRs in isolation) often show up with
reduced apparent disorder within IDRs, and but can be as short as 20-30 residues. The
folded_domain_threshold is used based on the idea that it allows a ‘shortest reasonable’
folded domain to be identified. Default=50.

• gap_closure (int) – Defines the largest gap that would be ‘closed’. Gaps here refer to a
scenario in which you have two groups of disordered residues seprated by a ‘gap’ of un-
disordered residues. In general large gap sizes will favour larger contigous IDRs. It’s worth
noting that gap_closure becomes relevant only when minimum_region_size becomes very
small (i.e. < 5) because really gaps emerge when the smoothed disorder fit is “noisy”, but
when smoothed gaps are increasingly rare. Default=10.

• normalized (bool) – whether the disorder scores are normalized between zero and one,
default is true

• return_numpy (bool) – Flag which if set to true means all numerical types are returned as
numpy.ndlist. Default is True
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• legacy (bool) – Whether to use the original metapredict network

• return_list (bool) – Flag that determines i to return the old format where a tuple is returned.
This is retained for backwards compatibility

Returns

By default, the function returns a DisorderObject. A DisorderObject has 7 dot variables:

.sequence [str] Amino acid sequence

.disorder [list or np.ndaarray] disorder scores

.disordered_domain_boundaries [list] List of domain boundaries for IDRs using Python in-
dexing

.folded_domain_boundaries [list] List of domain boundaries for folded domains using Python
indexing

.disordered_domains [list] List of the actual sequences for IDRs

.folded_domains [list] List of the actual sequences for folded domains

Return type DisorderObject

Returns

However, if return_list == True. Then, the function returns a list with three elements, as
outlined below.

• [0] - Smoothed disorder score used to aid in domain boundary identification. This can be
useful for understanding how IDRs/folded domains were identified, and will vary depending
on the settings provided

• [1] - a list of elements, where each element defines the start and end position of each IDR.
If a sequence was provided the third element in each sub-element is the IDR sequence. If
no sequence was provided, then each sub-element is simply len=2.

• [2] - a list of elements, where each element defines the start and end position of each folded
region. If a sequence was provided the third element in each sub-element is the folded
domain sequence. If no sequence was provided, then each sub-element is simply len=2.

Return type list

metapredict.meta.predict_disorder(sequence, normalized=True, return_numpy=False,
legacy=False)

Function to return disorder of a single input sequence. Returns the predicted values as a list.

Parameters

• sequence (str) – Input amino acid sequence (as string) to be predicted.

• normalized (bool) – Flag which defines in the predictor should control and normalize such
that all values fall between 0 and 1. The underlying learning model can, in fact output some
negative values and some values greater than 1. Normalization controls for this. Default =
True

• return_numpy (bool) – Flag which if set to true means the function returns a np.array.

• legacy (bool) – Whether to use the original metapredict disorder predictor.

Returns Returns a list of floats that corresponds to the per-residue disorder score.

Return type list or np.ndarray
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metapredict.meta.graph_disorder(sequence, title=’Predicted protein disorder’, dis-
order_threshold=None, pLDDT_scores=False,
shaded_regions=None, shaded_region_color=’red’, DPI=150,
output_file=None, legacy=False)

Function to plot the disorder of an input sequece. Displays immediately.

Parameters

• sequence (str) – Input amino acid sequence (as string) to be predicted.

• title (str) – Sets the title of the generated figure. Default = “Predicted protein disorder”

• disorder_threshold (float) – Set to None by default such that if the user chooses to set
legacy=True, the threshhold line will be at 0.3 and if legacy is set to false (default) then the
threshold line will be at 0.5.

Sets a threshold which draws a horizontal black line as a visual guide along the length of the
figure. Must be a value between 0 and 1. Default = 0.3 for legacy and 0.5 for new version
of metapredict.

• pLDDT_scores (Bool) – Sets whether to include the predicted pLDDT scores in the figure

• shaded_regions (list of lists) – A list of lists, where sub-elements are of length 2 and contain
start and end values for regions to be shaded. Assumes that sanity checking on positions
has already been done. Default is None, but if there were specific regions you wanted to
highlight this might, for example, look like shaded_regions=[[1,10],[40,50]], which would
shade between 1 and 10 and then between 40 and 50. This can be useful to either highlight
specific IDRs or specific folded domains

• shaded_region_color (str or list of sts) – String that defines the color of the shaded region.
The shaded region is always set with an alpha of 0.3 but the color can be any valid matplotlib
color name or a hex color string (i.e. “#ff0000” is red). Alternatively a list where number of
elements matches number in shaded_regions, assigning a color-per-shaded regions.

• DPI (int) – Dots-per-inch. Defines the resolution of the generated figure. Passed to the dpi
argument in matplotlib.pyplot.savefig().

• output_file (str) – If provided, the output_file variable defines the location and type of the
file to be saved. This should be a file location and filename with a valid matplotlib extension
(such as .png, or .pdf) and, if provided, this value is passed directly to the matplotlib.
pyplot.savefig() function as the fname parameter. Default = None.

• legacy (bool) – whether to use the legacy metapredict predictions

Returns No return object, but, the graph is saved to disk or displayed locally.

Return type None

metapredict.meta.predict_all(sequence)
Function to return all three types of predictions (legacy_metapredict, metapredict, and ppLDDT). Returns as a
tuple of numpy arrays, with ppLDDT returned as normalized between 0 and 1 (rather than 0 and 100) so can be
plotted on same axis easily.

Parameters sequence (str) – Input amino acid sequence (as string) to be predicted.

Returns [0] - metapredict disorder scores (updated metapredict disorder) [1] - legacy metapredict
disorder (original metapredict disorder) [2] - normalized ppLDDT scores

Return type tuple with three np.ndarrays

metapredict.meta.percent_disorder(sequence, disorder_threshold=None, mode=’threshold’,
legacy=False)

Function that returns the percent disorder for any given protein. By default, uses 0.5 as a cutoff for the new
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version of metapredict and 0.3 for the legacy version of metapredict (values greater than or equal to 0.5 will be
considered disordered). If a value for cutoff is specified, that value will be used.

Mode lets you toggle between ‘threshold’ and ‘disorder_domains’. If threshold is used a simple per-residue logic
operation is applied and the fraction of residues above the disorder_threshold is used. If ‘disorder_domains’
is used then the sequence is divided into IDRs and folded domains using the predict_disordered_domains()
function.

Parameters

• sequence (str) – Input amino acid sequence (as string) to be predicted.

• disorder_threshold (float) – Set to None by default such that it will change depending on
whether legacy is set to True or False.

Sets a threshold which defines if a residue is considered disordered or not. Default for new
metapredict = 0.5. Default for legacy metapredict is 0.3.

• mode (str) – Selector which lets you choose which mode to calculate percent disorder with.
Default is ‘threshold’, meaning the percentage of disorder is calculated as what fraction of
residues are above the disorder_threshold. Alternatively, ‘disorder_domains’ means we use
the predict_disorder_domains() function and then calculate what fraction of the protein’s
residues are in the predicted IDRs.

• legacy (bool) – Whether or not to use the legacy metapredict.

Returns Returns a floating point value between 0 and 100 that defines what percentage of the se-
quence is considered disordered.

Return type float

metapredict.meta.predict_disorder_fasta(filepath, output_file=None, normalized=True, in-
valid_sequence_action=’convert’, legacy=False)

Function to read in a .fasta file from a specified filepath. Returns a dictionary of disorder values where the key
is the fasta header and the values are the predicted disorder values.

Parameters

• filepath (str) – The path to where the .fasta file is located. The filepath should end in the file
name, and can be an absolute or relative path

• output_file (str) – By default, a dictionary of predicted values is returned immediately.
However, you can specify an output filename and path and a .csv file will be saved. This
should include any file extensions. Default = None.

• normalized (bool) – Flag which defines in the predictor should control and normalize such
that all values fall between 0 and 1. The underlying learning model can, in fact output some
negative values and some values greater than 1. Normalization controls for this. Default =
True

• invalid_sequence_action (str) – Tells the function how to deal with sequences that lack
standard amino acids. Default is convert, which as the name implies converts via standard
rules. See https://protfasta.readthedocs.io/en/latest/read_fasta.html for more information.

• legacy (bool) – Whether to use the legacy metapredict predictor. Default = False.

Returns If output_file is set to None (as default) then this fiction returns a dictionary of sequence ID
to disorder vector. If output_file is set to a filename then a .csv file will instead be written and
no return data will be provided.

Return type dict or None
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metapredict.meta.graph_disorder_fasta(filepath, pLDDT_scores=False, disor-
der_threshold=None, DPI=150, out-
put_dir=None, output_filetype=’png’, in-
valid_sequence_action=’convert’, in-
dexed_filenames=False, legacy=False)

Function to make graphs of predicted disorder from the sequences in a specified .fasta file. By default will save
the generated graphs to the location output_path specified in filepath.

WARNING: It is unadvisable to not include an output directory if you are reading in a .fasta file with many
sequences! This is because each graph must be closed individually before the next will appear. Therefore, you
will spend a bunch of time closing each graph.

NB: You cannot specify the output file name here! By default, the file name will be the first 14 characters of
the FASTA header followed by the filetype as specified by filetype. If you wish for the files to include a unique
leading number (i.e. X_rest_of_name where X starts at 1 and increments) then set indexed_filenames to True.
This can be useful if you have sequences where the 1st 14 characters may be identical, which would otherwise
overwrite an output file.

Parameters

• filepath (str) – The path to where the .fasta file is located. The
filepath should end in the file name. For example (on Ma-
cOS):filepath=”/Users/thisUser/Desktop/folder_of_seqs/interesting_proteins.fasta”

• pLDDT_scores (Bool) – Sets whether to include the predicted pLDDT scores from Al-
phaFold2

• disorder_threshold (float) – Sets a threshold which draws a horizontal black line as a visual
guide along the length of the figure. Must be a value between 0 and 1.

• DPI (int) – Dots-per-inch. Defines the resolution of the generated figure. Passed to the dpi
argument in matplotlib.pyplot.savefig().

• output_dir (str) – If provided, the output_dir variable defines the directory where file should
besaved to be saved. This should be a writeable filepath. Default is None. Output files
are saved with filename as first 14 chars of fasta header (minus bad characters) plus the
appropriate file extension, as defined by filetype.

• output_filetype (str) – String that defines the output filetype to be used. Must be one of pdf,
png, jpg.

• invalid_sequence_action (str) – Tells the function how to deal with sequences that lack
standard amino acids. Default is convert, which as the name implies converts via standard
rules. See https://protfasta.readthedocs.io/en/latest/read_fasta.html for more information.

• indexed_filenames (bool) – Bool which, if set to true, means filenames start with an unique
integer.

• legacy (bool) – Whether to use the legacy metapredict predictor.

Returns No return object, but, the graph is saved to disk or displayed locally.

Return type None

metapredict.meta.predict_disorder_uniprot(uniprot_id, normalized=True, legacy=False)
Function to return disorder of a single input sequence. Uses a Uniprot ID to get the sequence.

Parameters

• uniprot_ID (str) – The uniprot ID of the sequence to predict

• no_ID (str) – The uniprot ID of the sequence to predict

Returns No return object, but, the graph is saved to disk or displayed locally.
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Return type None

metapredict.meta.graph_disorder_uniprot(uniprot_id, title=’Predicted protein dis-
order’, pLDDT_scores=False, disor-
der_threshold=None, shaded_regions=None,
shaded_region_color=’red’, DPI=150, out-
put_file=None, legacy=False)

Function to plot the disorder of an input sequece. Displays immediately.

Parameters

• sequence (str) – Input amino acid sequence (as string) to be predicted.

• title (str) – Sets the title of the generated figure. Default = “Predicted protein disorder”

• pLDDT_scores (Bool) – Sets whether to include the predicted pLDDT scores from Al-
phaFold2

• disorder_threshold (float) – Set to None by default such that it will change depending of if
the user sets legacy to True of if legacy remains = False. Can still be set manually.

Sets a threshold which draws a horizontal black line as a visual guide along the length of the
figure. Must be a value between 0 and 1.

• shaded_regions (list of lists) – A list of lists, where sub-elements are of length 2 and contain
start and end values for regions to be shaded. Assumes that sanity checking on positions
has already been done. Default is None, but if there were specific regions you wanted to
highlight this might, for example, look like shaded_regions=[[1,10],[40,50]], which would
shade between 1 and 10 and then between 40 and 50. This can be useful to either highlight
specific IDRs or specific folded domains

• shaded_region_color (str) – String that defines the color of the shaded region. The shaded
region is always set with an alpha of 0.3 but the color can be any valid matplotlib color name
or a hex color string (i.e. “#ff0000” is red).

• DPI (int) – Dots-per-inch. Defines the resolution of the generated figure. Passed to the dpi
argument in matplotlib.pyplot.savefig().

• output_file (str) – If provided, the output_file variable defines the location and type of the
file to be saved. This should be a file location and filename with a valid matplotlib extension
(such as .png, or .pdf) and, if provided, this value is passed directly to the matplotlib.
pyplot.savefig() function as the fname parameter. Default = None.

• legacy (bool) – whether to use the legacy metapredict predictor

Returns No return object, but, the graph is saved to disk or displayed locally.

Return type None

metapredict.meta.predict_disorder_domains_uniprot(uniprot_id, disor-
der_threshold=None, min-
imum_IDR_size=12, min-
imum_folded_domain=50,
gap_closure=10, normal-
ized=True, return_numpy=True,
legacy=False)

This function takes an amino acid sequence, a disorder score, and returns either a DisorderObjec 4-position
tuple with the information listed below.

Parameters

• uniprot_ID (String) – The uniprot ID of the sequence to predict
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• sequence (str) – Amino acid sequence

• disorder_threshold (float) – Set to None by default such that the threshold value is is de-
pendent on whether legacy is set to True. The default for legacy is 0.42, the default for the
new metapredict is 0.5.

Value that defines what ‘disordered’ is based on the metapredict disorder score.

• minimum_IDR_size (int) – Defines the smallest possible IDR. This is a hard limit - i.e. we
CANNOT get IDRs smaller than this. Default = 12.

• minimum_folded_domain (int) – Defines where we expect the limit of small folded do-
mains to be. This is NOT a hard limit and functions to modulate the removal of large
gaps (i.e. gaps less than this size are treated less strictly). Note that, in addition, gaps <
35 are evaluated with a threshold of 0.35*disorder_threshold and gaps < 20 are evaluated
with a threshold of 0.25*disorder_threshold. These two lengthscales were decided based
on the fact that coiled-coiled regions (which are IDRs in isolation) often show up with
reduced apparent disorder within IDRs, and but can be as short as 20-30 residues. The
folded_domain_threshold is used based on the idea that it allows a ‘shortest reasonable’
folded domain to be identified. Default=50.

• gap_closure (int) – Defines the largest gap that would be ‘closed’. Gaps here refer to a
scenario in which you have two groups of disordered residues seprated by a ‘gap’ of un-
disordered residues. In general large gap sizes will favour larger contigous IDRs. It’s worth
noting that gap_closure becomes relevant only when minimum_region_size becomes very
small (i.e. < 5) because really gaps emerge when the smoothed disorder fit is “noisy”, but
when smoothed gaps are increasingly rare. Default=10.

• return_numpy (bool) – Flag which if set to true means all numerical types are returned as
numpy.ndlist. Default is True

Returns

Returns a DisorderObject. DisorderObject has 7 dot variables:

.sequence [str] Amino acid sequence

.disorder [list or np.ndaarray] Hybrid disorder score

.disordered_domain_boundaries [list] List of domain boundaries for IDRs using Python in-
dexing

.folded_domain_boundaries [list] List of domain boundaries for folded domains using Python
indexing

.disordered_domains [list] List of the actual sequences for IDRs

.folded_domains [list] List of the actual sequences for folded domains

Return type DisorderObject
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metapredict.meta.predict_disorder_domains_from_external_scores(disorder, se-
quence=None,
disor-
der_threshold=0.5,
mini-
mum_IDR_size=12,
mini-
mum_folded_domain=50,
gap_closure=10,
over-
ride_folded_domain_minsize=False,
re-
turn_numpy=True)

This function takes in disorder scores generated from another predictor and applies the same domain-
decomposition algorithm as predict_disorder_domains() does to extract out congigous IDRs. For example, if
one were to predict disorder using the (excellent) ODiNPred, download the resulting scores, and read the scores
into a list, that list could be passed as the $disorder argument to this function.

Note that the settings used here may be inapplicable to another disorder predictor, so you may need to play
around with the parameters including disorder_threshold, minimum_IDR_size, minimum_folded_domain and
gap_closure.

Parameters

• disorder (list) – A list of per-residue disorder scores.

• sequence (str) – The protein sequence as a string. If no sequence is passed, calling Disor-
derObject.sequence will return an fake sequence.

• disorder_threshold (float) – Value that defines what ‘disordered’ is based on the input
predictor score. The higher the value the more stringent the cutoff. Default = 0.5.

• minimum_IDR_size (int) – Defines the smallest possible IDR. This is a hard limit - i.e. we
CANNOT get IDRs smaller than this. Default = 12.

• minimum_folded_domain (int) – Defines where we expect the limit of small folded do-
mains to be. This is NOT a hard limit and functions to modulate the removal of large
gaps (i.e. gaps less than this size are treated less strictly). Note that, in addition, gaps <
35 are evaluated with a threshold of 0.35*disorder_threshold and gaps < 20 are evaluated
with a threshold of 0.25*disorder_threshold. These two lengthscales were decided based
on the fact that coiled-coiled regions (which are IDRs in isolation) often show up with
reduced apparent disorder within IDRs, and but can be as short as 20-30 residues. The
folded_domain_threshold is used based on the idea that it allows a ‘shortest reasonable’
folded domain to be identified. Default = 50.

• gap_closure (int) – Defines the largest gap that would be ‘closed’. Gaps here refer to a
scenario in which you have two groups of disordered residues seprated by a ‘gap’ of un-
disordered residues. In general large gap sizes will favour larger contigous IDRs. It’s worth
noting that gap_closure becomes relevant only when minimum_region_size becomes very
small (i.e. < 5) because really gaps emerge when the smoothed disorder fit is “noisy”, but
when smoothed gaps are increasingly rare. Default = 10.

• override_folded_domain_minsize (bool) – By default this function includes a fail-safe
check that assumes folded domains really shouldn’t be less than 35 or 20 residues. However,
for some approaches we may wish to over-ride these thresholds to match the passed mini-
mum_folded_domain value. If this flag is set to True this override occurs. This is generally
not recommended unless you expect there to be well-defined sharp boundaries which could
define small (20-30) residue folded domains. This is not provided as an option in the normal
predict_disorder_domains for metapredict. Default = False.
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• return_numpy (bool) – Flag which if set to true means all numerical types are returned as
numpy.ndlist. Default is True

Returns

Returns a DisorderObject. DisorderObject has 7 dot variables:

.sequence [str] Amino acid sequence

.disorder [list or np.ndaarray] Hybrid disorder score

.disordered_domain_boundaries [list] List of domain boundaries for IDRs using Python in-
dexing

.folded_domain_boundaries [list] List of domain boundaries for folded domains using Python
indexing

.disordered_domains [list] List of the actual sequences for IDRs

.folded_domains [list] List of the actual sequences for folded domains

Return type DisorderObject

metapredict.meta.graph_pLDDT_uniprot(uniprot_id, title=’Predicted AF2 pLDDT Scores’,
shaded_regions=None, shaded_region_color=’red’,
DPI=150, output_file=None)

Function to plot the disorder of an input sequece. Displays immediately.

Parameters

• sequence (str) – Input amino acid sequence (as string) to be predicted.

• title (str) – Sets the title of the generated figure. Default = “Predicted protein disorder”

• shaded_regions (list of lists) – A list of lists, where sub-elements are of length 2 and contain
start and end values for regions to be shaded. Assumes that sanity checking on positions
has already been done. Default is None, but if there were specific regions you wanted to
highlight this might, for example, look like shaded_regions=[[1,10],[40,50]], which would
shade between 1 and 10 and then between 40 and 50. This can be useful to either highlight
specific IDRs or specific folded domains

• shaded_region_color (str) – String that defines the color of the shaded region. The shaded
region is always set with an alpha of 0.3 but the color can be any valid matplotlib color name
or a hex color string (i.e. “#ff0000” is red).

• DPI (int) – Dots-per-inch. Defines the resolution of the generated figure. Passed to the dpi
argument in matplotlib.pyplot.savefig().

• output_file (str) – If provided, the output_file variable defines the location and type of the
file to be saved. This should be a file location and filename with a valid matplotlib extension
(such as .png, or .pdf) and, if provided, this value is passed directly to the matplotlib.
pyplot.savefig() function as the fname parameter. Default = None.

Returns No return object, but, the graph is saved to disk or displayed locally.

Return type None

metapredict.meta.predict_pLDDT_uniprot(uniprot_id)
Function to return pLDDT score of a single input sequence. Uses a Uniprot ID to get the sequence.

Parameters uniprot_ID (str) – The uniprot ID of the sequence to predict

Returns No return object, but, the graph is saved to disk or displayed locally.

Return type None
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metapredict.meta.graph_pLDDT_fasta(filepath, DPI=150, output_dir=None, out-
put_filetype=’png’, invalid_sequence_action=’convert’,
indexed_filenames=False)

Function to make graphs of predicted pLDDT from the sequences in a specified .fasta file. By default will save
the generated graphs to the location output_path specified in filepath.

WARNING: It is unadvisable to not include an output directory if you are reading in a .fasta file with many
sequences! This is because each graph must be closed individually before the next will appear. Therefore, you
will spend a bunch of time closing each graph.

NB: You cannot specify the output file name here! By default, the file name will be the first 14 characters of
the FASTA header followed by the filetype as specified by filetype. If you wish for the files to include a unique
leading number (i.e. X_rest_of_name where X starts at 1 and increments) then set indexed_filenames to True.
This can be useful if you have sequences where the 1st 14 characters may be identical, which would otherwise
overwrite an output file.

Parameters

• filepath (str) – The path to where the .fasta file is located. The
filepath should end in the file name. For example (on Ma-
cOS):filepath=”/Users/thisUser/Desktop/folder_of_seqs/interesting_proteins.fasta”

• DPI (int) – Dots-per-inch. Defines the resolution of the generated figure. Passed to the dpi
argument in matplotlib.pyplot.savefig().

• output_dir (str) – If provided, the output_dir variable defines the directory where file should
besaved to be saved. This should be a writeable filepath. Default is None. Output files
are saved with filename as first 14 chars of fasta header (minus bad characters) plus the
appropriate file extension, as defined by filetype.

• output_filetype (str) – String that defines the output filetype to be used. Must be one of pdf,
png, jpg.

• invalid_sequence_action (str) – Tells the function how to deal with sequences that lack
standard amino acids. Default is convert, which as the name implies converts via standard
rules. See https://protfasta.readthedocs.io/en/latest/read_fasta.html for more information.

• indexed_filenames (bool) – Bool which, if set to true, means filenames start with an unique
integer.

Returns No return object, but, the graph is saved to disk or displayed locally.

Return type None

metapredict.meta.predict_pLDDT_fasta(filepath, output_file=None, in-
valid_sequence_action=’convert’)

Function to read in a .fasta file from a specified filepath. Returns a dictionary of pLDDT values where the key
is the fasta header and the values are the predicted pLDDT values.

Parameters filepath (str) – The path to where the .fasta file is located. The filepath should end in
the file name, and can be an absolute or relative path

output_file [str] By default, a dictionary of predicted values is returned immediately. However, you can specify
an output filename and path and a .csv file will be saved. This should include any file extensions. Default
= None.

invalid_sequence_action [str] Tells the function how to deal with sequences that lack standard amino acids.
Default is convert, which as the name implies converts via standard rules. See https://protfasta.readthedocs.
io/en/latest/read_fasta.html for more information.
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Returns If output_file is set to None (as default) then this fiction returns a dictionary of sequence ID
to pLDDT vector. If output_file is set to a filename then a .csv file will instead be written and no
return data will be provided.

Return type dict or None

metapredict.meta.graph_pLDDT(sequence, title=’Predicted AF2 pLDDT Confidence
Score’, disorder_scores=False, shaded_regions=None,
shaded_region_color=’red’, DPI=150, output_file=None)

Function to plot the AF2 pLDDT scores of an input sequece. Displays immediately.

Parameters

• sequence (str) – Input amino acid sequence (as string) to be predicted.

• title (str) – Sets the title of the generated figure. Default = “Predicted AF2 pLDDT Confi-
dence Score”

• disorder_scores (Bool) – Whether to include disorder scores. Can set to False if you just
want the AF2 confidence scores. Default = False

• shaded_regions (list of lists) – A list of lists, where sub-elements are of length 2 and contain
start and end values for regions to be shaded. Assumes that sanity checking on positions
has already been done. Default is None, but if there were specific regions you wanted to
highlight this might, for example, look like shaded_regions=[[1,10],[40,50]], which would
shade between 1 and 10 and then between 40 and 50. This can be useful to either highlight
specific IDRs or specific folded domains. Default = None

• shaded_region_color (str) – String that defines the color of the shaded region. The shaded
region is always set with an alpha of 0.3 but the color can be any valid matplotlib color name
or a hex color string (i.e. “#ff0000” is red).

• DPI (int) – Dots-per-inch. Defines the resolution of the generated figure. Passed to the dpi
argument in matplotlib.pyplot.savefig().

• output_file (str) – If provided, the output_file variable defines the location and type of the
file to be saved. This should be a file location and filename with a valid matplotlib extension
(such as .png, or .pdf) and, if provided, this value is passed directly to the matplotlib.
pyplot.savefig() function as the fname parameter. Default = None.

Returns No return object, but, the graph is saved to disk or displayed locally.

Return type None

metapredict.meta.predict_pLDDT(sequence, return_numpy=False, normalized=False)
Function to return predicted pLDDT scores. pLDDT scores are the scores reported by AlphaFold2 (AF2) that
provide a measure of the confidence with which AF2 has on the local structure prediction. predicted_pLDDT
(ppLDDT for short) is a prediction of this confidence score generated using a LSTM-BRNN network trained on
~360,000 protein structures.

In effect, this value should be considered a prediction of how confident we are that AF2 would be able to predict
the structure. This is a reasonably good proxy for the prediction that a region will be structured but is not perfect.

Parameters

• sequence (str) – Input amino acid sequence (as string) to be predicted.

• return_numpy (bool) – Flag which, if set to true, means the function returns a numpy array
instead of a list.

• normalized (bool) – Flag which, if set to true, means the function returns values scaled
between 0 and 1 (rather than 0 and 100).
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Returns Returns a list (or np.ndarray) of floats that corresponds to the per-residue pLDDT score.
Return type depends on the flag return_numpy

Return type list or np.ndarray

metapredict.meta.predict_disorder_caid(input_fasta, output_file)
executing script for generating a caid-compliant output file for disorder predictions using a .fasta file as the
input.

Parameters

• input_fasta (str) – the input file as a string that includes the file path preceeding the file
name if the file is not in the curdir

• output_file (str) – the output file name as a string. This can include a file path to a specific
save location or by default saves to the curdir

Returns Does not return anything, saves a file to the destination output file

Return type None
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CHAPTER 6

HELP! Metapredict isn’t working!

6.1 Python Version Issues

I have recieved occassional feedback that metapredict is not working for a user. A common problem is that the user is
using a different version of Python than metapredict was made on. metapredict was made using Python version 3.7,
but works on 3.8 as well. I recommend using one of these versions to avoid problems (I haven’t done extensive testing
using other versions of Python, so if you’re not using 3.7 or 3.8, do so at your own risk). A convenient workaround is
to use a conda environment that has Python 3.7 set as the default version of Python. For more info on conda, please
see https://docs.conda.io/projects/conda/en/latest/index.html

Once you have conda installed, simply use the command

conda create --name my_env python=3.7
conda activate my_env

and once activate install metapredict from PyPI

pip install metapredict

You can, then use metapredict from within this conda environment. In all our testing, this setup leads to a working
version of metapredict. However, in principle metapredict should work automatically when installed from pip.

6.2 Reporting Issues

If you are having other problems, please report them to the issues section on the metapredict Github page at https:
//github.com/idptools/metapredict/issues
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CHAPTER 7

Recent changes

7.1 About

This section is a log of recent changes with metapredict. My hope is that as I change things, this section can help you
figure out why a change was made and if it will break any of your current work flows. The first major changes were
made for the 0.56 release, so tracking will start there.

7.2 V2.4.2

Changes:

• Integrated in changes from @FriedLabJHU to make f-strings more Pythonic

• Changed return_normalized keyword to normalized in meta.predict_pLDDT() for consistency
with other functions

• Added sanity check in case a passed sequence is an empty string (h/t Broder Schmidt)

• Added docs for the mode keyword in meta.percent_disorder(), so this is actually obvious to understand

• Added several additional tests and updated the docs.

7.3 V2.4.1

Changes:

• Some minor bug fixes and updates to code
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7.4 V2.3

Changes:

• Merged pull request from @FriedLabJHU to fix keyword name cutoff to disorder_threshold in
meta.percent_disorder(). Thanks!!

• Added the mode keyword into meta.percent_disorder() so disorder can be predicted in terms of what percentage
of residues fall within IDRs, as well as what percent are above some fixed threshold.

7.5 V2.2

Changes: Fixed bug in metapredict-name command that could result in the organism name being named twice in the
title of the graph.

7.6 V2.1

Changes: Added functionality to graph the disorder of a protein by specifying its common name using the metapredict-
name command.

7.7 V2.0

Changes: Massive update to the network behind metapredict to improve accuracy. Implementation of code to keep
the original network accessible to users. Changes to predict_disorder_domain functions where a DisorderObject is no
returned and access to values are used by calling properties from the generated object. Graphing functionality updated
to accomadate new cutoff value for the new network at 0.5. If the original metapredict network is used, then the cutoff
value automatically resets to the original value of 0.3. Tests updated.

7.8 V1.51

Changes: Updated to require V1.0 of alphaPredict for pLDDT scores. This improves accuracy from over 9% per
residue to about 8% per residue for pLDDT score predictions. Documentation was updated for this change.

7.9 V1.5

Changes: Fixed bug causing some functions to fail when getting sequences from Uniprot. Added information on citing
metapredict because the final publication went live.

7.10 V1.4

Change: For clarity, previous functions that used the term ‘confidence’ such as graph_confidence_uniprot() were
changed to use the term pLDDT rather than confidence. This is to clarify that the confidence scores are AlphaFold2
pLDDT confidence scores and not scores to reflect the confidence that the user should have in the metapredict disorder
prediction. For command-line usage where confidence scores are optional (such as metapredict-graph-disorder), when
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a -c or –confidence flag used to be used, now a -p or –pLDDT flag is used to graph confidence scores. This is similarly
reflected in Python where now you must use pLDDT_scores=True instead of confidence_scores=True.

7.11 V1.3

Change: Added functionality to generate predicted AlphaFold2 confidence scores. Can get scores or generate graphs
from Python or command-line. Can also generate graphs with both predicted disorder and predicted confidence scores.
Also added functionality to predict disorder domains using scores from a different disorder predictor.

7.12 V.1.2

Change: Major update. Changed some basic functionality. Made it such that you don’t need to specify to save (for
disorder prediction values or graphs). Rather, if a file path is specified, the files will be saved. Updated graphing
functionality to allow for specifying the disorder cutoff line and to allow users to highlight various regions of the
graph. Changed import such that you can now just use import metapredict as meta in Python (as opposed to import
metapredict and then from metapredict import meta). Lots of backend changes to make metapredict more stable.
Added additional testing. Updated documentation. Standardized file reading/writing. Made it so user can specify
file type of saved graphs. Added backend meta_tools.py to handle the busywork. Changed version numbering for
networks. Updated code to avoid OMPLIB issue (known bug in previous versions). Updated all command-line tools
to match backend code.

7.13 V.1.1

Change: Fixed some bugs.

7.14 V.1.0

Change: Added functionality to generate graphs using a Uniprot ID as the input. Added functionality to predict
disorder domains.

7.15 V.061

Change: Added functionality to predict or graph a disordered sequence from the command line by directly inputting
the sequence. This can only do one sequence at a time and does not save the disorder values or graph. It is meant to
provide a very quick and easy way to check something out.

7.16 V.060

Change: Added functionality to specify the horizontal lines that appear across the graphs rather than only having the
option of having the dashed lines appear at intervals of 0.2. This functionality is in both Python and the command line.
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7.17 V0.58

Change: Updated the network with a newly trained network (using the same dataset as the original) that is slightly
more accurate.

Reason: I am always trying to find ways to make metapredict more accurate. When I manage to make the predictor
better, I will update it.

7.18 V0.57

Change: Bug fix that could result in prediction values to six decimal places in some scenarios

Change: Changed titles for graphs generated by metapredict-graph-disorder to be 14 characters instead of
10. This is reflected in the title graph and the saved files.

Reason: The 10 character save file was occassionally the same for multiple proteins. This resulted in the inability to
discern which protein corresponded to which graph and could result in overwriting previously generated graphs. The
14 characters should be long enough to keep unique names for all proteins being analyzed.

Change: Fixed bug that could result in crashing due to short fasta headers.

7.19 V0.56

Change: Number of decimals in predictions was reduced from 6 to 3. Reason: It is not necessary to have accuracy out
to 6 decimal places.

Change: Added functionality to use . to specify current directory from command line. Reason: Improve functionality.

Change: -DPI flag changed to -dpi in command line graphing function Reason: It was annoying to have to do all caps
for this flag.

Change: The predict-disorder command is now metapredict-predict-disorder and the
graph-disorder command is now metapredict-graph-disorder Reason: This will help users be able
to use auto complete functionality from the command line using tab to pull up the graph or predict disorder commands
while only having to remember metapredict.

Change: The output for .csv files will now have a comma space between each value instead of just a comma. Reason:
Improve readability.
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CHAPTER 8

How to cite metapredict

If you use metapredict for your work, please cite the metapredict paper -

Emenecker RJ, Griffith D, Holehouse AS, metapredict: a fast, accurate, and easy-to-use predictor of consensus disor-
der and structure, Biophysical Journal (2021), doi: https:// doi.org/10.1016/j.bpj.2021.08.039.
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m
metapredict, 29
metapredict.meta, 30
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graph_disorder() (in module metapredict.meta), 31
graph_disorder_fasta() (in module metapre-

dict.meta), 33
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percent_disorder() (in module metapredict.meta),

32
predict_all() (in module metapredict.meta), 32
predict_disorder() (in module metapredict.meta),

31
predict_disorder_caid() (in module metapre-

dict.meta), 41
predict_disorder_domains() (in module

metapredict.meta), 30
predict_disorder_domains_from_external_scores()

(in module metapredict.meta), 36
predict_disorder_domains_uniprot() (in

module metapredict.meta), 35
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dict.meta), 33
predict_disorder_uniprot() (in module

metapredict.meta), 34
predict_pLDDT() (in module metapredict.meta), 40
predict_pLDDT_fasta() (in module metapre-

dict.meta), 39
predict_pLDDT_uniprot() (in module metapre-

dict.meta), 38

print_metapredict_legacy_network_version()
(in module metapredict), 29

print_metapredict_network_version() (in
module metapredict), 29

print_performance() (in module metapredict), 29
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